Storm技術內幕與大數據實踐( 簡體 字) | |
作者:陳敏敏,王新春,黃奉線 | 類別:1. -> 程式設計 -> 大數據 |
出版社:人民郵電出版社 | 3dWoo書號: 41439 詢問書籍請說出此書號! 有庫存 NT售價: 245 元 |
出版日:5/1/2015 | |
頁數:192 | |
光碟數:0 | |
站長推薦: | |
印刷:黑白印刷 | 語系: ( 簡體 字 ) |
ISBN:9787115388537 | 加入購物車 │加到我的最愛 (請先登入會員) |
(簡體書上所述之下載連結耗時費功, 恕不適用在台灣, 若讀者需要請自行嘗試, 恕不保證, 繁體書的下載亦請直接連絡出版社) | |
第1章 緒論 1
1.1 Storm的基本組件 2 1.1.1 集群組成 2 1.1.2 核心概念 3 1.1.3 Storm的可靠性 5 1.1.4 Storm的特性 6 1.2 其他流式處理框架 6 1.2.1 Apache S4 6 1.2.2 Spark Streaming 6 1.2.3 流計算和Storm的應用 7 第2章 實時平臺介紹 11 2.1 實時平臺架構介紹 11 2.2 Kafka架構 13 2.2.1 Kafka的基本術語和概念 13 2.2.2 Kafka在實時平臺中的應用 14 2.2.3 消息的持久化和順序讀寫 15 2.2.4 sendfile系統調用和零復制 15 2.2.5 Kafka的客戶端 17 2.2.6 Kafka的擴展 17 2.3 大眾點評實時平臺 17 2.3.1 相關數據 18 2.3.2 實時平臺簡介 18 2.3.3 Blackhole 19 2.4 1號店實時平臺 20 第3章 Storm集群部署和配置 23 3.1 Storm的依賴組件 23 3.2 Storm的部署環境 24 3.3 部署Storm服務 24 3.3.1 部署ZooKeeper 24 3.3.2 部署Storm 25 3.3.3 配置Storm 25 3.4 啟動Storm 28 3.5 Storm的守護進程 28 3.6 部署Storm的其他節點 30 3.7 提交Topology 30 第4章 Storm內部剖析 33 4.1 Storm客戶端 33 4.2 Nimbus 36 4.2.1 啟動Nimbus服務 36 4.2.2 Nimbus服務的執行過程 38 4.2.3 分配Executor 44 4.2.4 調度器 46 4.2.5 默認調度器DefaultScheduler 47 4.2.6 均衡調度器EvenScheduler 50 4.3 Supervisor 53 4.3.1 ISupervisor接口 54 4.3.2 Supervisor的共享數據 54 4.3.3 Supervisor的執行過程 56 4.4 Worker 61 4.4.1 Worker中的數據流 61 4.4.2 創建Worker的過程 62 4.5 Executor 65 4.5.1 Executor的創建 66 4.5.2 創建Spout的Executor 69 4.5.3 創建Bolt的Executor 74 4.6 Task 76 4.6.1 Task的上下文對象 77 4.6.2 Task的創建 82 4.7 Storm中的統計 84 4.7.1 stats框架 85 4.7.2 metric框架 90 4.8 Ack框架 91 4.8.1 Ack的原理 92 4.8.2 Acker Bolt 94 4.9 Storm總體架構 95 第5章 Storm運維和監控 97 5.1 主機信息監控 97 5.1 日志和監控 98 5.2 Storm UI和NimbusClient 99 5.3 Storm Metric的使用 100 5.4 Storm ZooKeeper的目錄 102 5.5 Storm Hook的使用 104 第6章 Storm的擴展 107 6.1 Storm UI的擴展 107 6.1.1 Storm UI原生功能 108 6.1.2 Storm UI新功能需求 108 6.1.3 Storm的Thrift接口 109 6.2 資源隔離 110 6.2.1 CGroup測試 111 6.2.2 基于CGroup的資源隔離的實現 119 第7章 Storm開發 121 7.1 簡單示例 121 7.2 調試和日志 122 7.3 Storm Trident 124 7.4 Strom DRPC 128 第8章 基于Storm的實時數據平臺 129 8.1 Hadoop到Storm的代碼遷移經驗 129 8.2 實時用戶畫像 130 8.2.1 簡單實時畫像 130 8.2.2 實時畫像優化 131 8.2.3 實時畫像的毫秒級更新 133 8.3 其他場景畫像 135 8.4 畫像的興趣度模型構建 136 8.5 外部畫像融合經驗分享 138 8.6 交互式查詢和分析用戶畫像 142 8.7 實時產品和店鋪信息更新 143 第9章 大數據應用案例 145 9.1 實時DAU計算 145 9.2 實時個性化推薦 150 9.2.1 推薦系統介紹 150 9.2.2 實時推薦系統的方法 153 9.2.3 基于Storm的實時推薦系統 156 9.3 廣告投放的精準化 158 9.3.1 點擊率預測 158 9.3.2 搜索引擎營銷 161 9.3.3 精準化營銷與千人千面 161 9.4 實時意圖和搜索 164 9.4.1 用戶意圖預測 165 9.4.2 搜索比價 167 9.4.3 搜索排序 168 第10章 Storm使用經驗和性能優化 171 10.1 使用經驗 171 10.1.1 使用rebalance命令動態調整并發度 171 10.1.2 使用tick消息做定時器 172 10.1.3 使用組件的并行度代替線程池 174 10.1.4 不要用DRPC批量處理大數據 174 10.1.5 不要在Spout中處理耗時的操作 174 10.1.6 log4j的使用技巧 175 10.1.7 注意fieldsGrouping的數據均衡性 176 10.1.8 優先使用localOrShuffleGrouping 176 10.1.9 設置合理的MaxSpoutPending值 177 10.1.10 設置合理的Worker數 177 10.1.11 平衡吞吐量和時效性 178 10.2 性能優化 179 10.2.1 找到Topology的性能瓶頸 179 10.2.2 GC參數優化 181 10.3 性能優化原則 181 附錄A Kafka原理 183 附錄B 將Storm源碼導入Eclipse 191 《Storm技術內幕與大數據實踐》內容主要圍繞實時大數據系統的各個方面展開,從實時平臺總體介紹到集群源碼、運維監控、實時系統擴展、以用戶畫像為主的數據平臺,最后到推薦、廣告、搜索等具體的大數據應用。書中提到的不少問題是實際生產環境中因為數據量增長而遇到的一些真實問題,對即將或正在運用實時系統處理大數據問題的團隊會有所幫助。
|