TensorFlow機器學習實戰指南( 簡體 字) | |
作者:[美] 尼克·麥克盧爾(Nick McClure)著 | 類別:1. -> 程式設計 -> 深度學習 2. -> 程式設計 -> 機器學習 |
出版社:機械工業出版社 | 3dWoo書號: 47683 詢問書籍請說出此書號! 有庫存 NT售價: 345 元 |
出版日:9/1/2017 | |
頁數:270 | |
光碟數:0 | |
站長推薦: | |
印刷:黑白印刷 | 語系: ( 簡體 字 ) |
ISBN:9787111579489 | 加入購物車 │加到我的最愛 (請先登入會員) |
(簡體書上所述之下載連結耗時費功, 恕不適用在台灣, 若讀者需要請自行嘗試, 恕不保證, 繁體書的下載亦請直接連絡出版社) | |
譯者序
作者簡介 審校者簡介 前言 第1章 TensorFlow基礎 1 1.1 TensorFlow介紹 1 1.2 TensorFlow如何工作 1 1.2.1 開始 1 1.2.2 動手做 2 1.2.3 工作原理 3 1.2.4 參考 3 1.3 聲明張量 3 1.3.1 開始 4 1.3.2 動手做 4 1.3.3 工作原理 5 1.3.4 延伸學習 5 1.4 使用占位符和變量 6 1.4.1 開始 6 1.4.2 動手做 6 1.4.3 工作原理 6 1.4.4 延伸學習 7 1.5 操作(計算)矩陣 7 1.5.1 開始 7 1.5.2 動手做 8 1.5.3 工作原理 9 1.6 聲明操作 10 1.6.1 開始 10 1.6.2 動手做 10 1.6.3 工作原理 11 1.6.4 延伸學習 12 1.7 實現激勵函數 12 1.7.1 開始 12 1.7.2 動手做 12 1.7.3 工作原理 13 1.7.4 延伸學習 13 1.8 讀取數據源 14 1.8.1 開始 15 1.8.2 動手做 15 1.8.3 參考 18 1.9 學習資料 19 第2章 TensorFlow進階 20 2.1 本章概要 20 2.2 計算圖中的操作 20 2.2.1 開始 20 2.2.2 動手做 21 2.2.3 工作原理 21 2.3 TensorFlow的嵌入Layer 21 2.3.1 開始 21 2.3.2 動手做 22 2.3.3 工作原理 22 2.3.4 延伸學習 22 2.4 TensorFlow的多層Layer 23 2.4.1 開始 23 2.4.2 動手做 24 2.4.3 工作原理 25 2.5 TensorFlow實現損失函數 26 2.5.1 開始 26 2.5.2 動手做 26 2.5.3 工作原理 28 2.5.4 延伸學習 29 2.6 TensorFlow實現反向傳播 30 2.6.1 開始 30 2.6.2 動手做 31 2.6.3 工作原理 33 2.6.4 延伸學習 34 2.6.5 參考 34 2.7 TensorFlow實現隨機訓練和批量訓練 34 2.7.1 開始 35 2.7.2 動手做 35 2.7.3 工作原理 36 2.7.4 延伸學習 37 2.8 TensorFlow實現創建分類器 37 2.8.1 開始 37 2.8.2 動手做 37 2.8.3 工作原理 39 2.8.4 延伸學習 40 2.8.5 參考 40 2.9 TensorFlow實現模型評估 40 2.9.1 開始 40 2.9.2 動手做 41 2.9.3 工作原理 41 第3章 基于TensorFlow的線性回歸 45 3.1 線性回歸介紹 45 3.2 用TensorFlow求逆矩陣 45 3.2.1 開始 45 3.2.2 動手做 46 3.2.3 工作原理 47 3.3 用TensorFlow實現矩陣分解 47 3.3.1 開始 47 3.3.2 動手做 47 3.3.3 工作原理 48 3.4 用TensorFlow實現線性回歸算法 49 3.4.1 開始 49 3.4.2 動手做 49 3.4.3 工作原理 52 3.5 理解線性回歸中的損失函數 52 3.5.1 開始 52 3.5.2 動手做 52 3.5.3 工作原理 53 3.5.4 延伸學習 54 3.6 用TensorFlow實現戴明回歸算法 55 3.6.1 開始 55 3.6.2 動手做 56 3.6.3 工作原理 57 3.7 用TensorFlow實現lasso回歸和嶺回歸算法 58 3.7.1 開始 58 3.7.2 動手做 58 3.7.3 工作原理 59 3.7.4 延伸學習 59 3.8 用TensorFlow實現彈性網絡回歸算法 60 3.8.1 開始 60 3.8.2 動手做 60 3.8.3 工作原理 61 3.9 用TensorFlow實現邏輯回歸算法 62 3.9.1 開始 62 3.9.2 動手做 62 3.9.3 工作原理 65 第4章 基于TensorFlow的支持向量機 66 4.1 支持向量機簡介 66 4.2 線性支持向量機的使用 67 4.2.1 開始 67 4.2.2 動手做 68 4.2.3 工作原理 72 4.3 弱化為線性回歸 72 4.3.1 開始 73 4.3.2 動手做 73 4.3.3 工作原理 76 4.4 TensorFlow上核函數的使用 77 4.4.1 開始 77 4.4.2 動手做 77 4.4.3 工作原理 81 4.4.4 延伸學習 82 4.5 用TensorFlow實現非線性支持向量機 82 4.5.1 開始 82 4.5.2 動手做 82 4.5.3 工作原理 84 4.6 用TensorFlow實現多類支持向量機 85 4.6.1 開始 85 4.6.2 動手做 86 4.6.3 工作原理 89 第5章 最近鄰域法 90 5.1 最近鄰域法介紹 90 5.2 最近鄰域法的使用 91 5.2.1 開始 91 5.2.2 動手做 91 5.2.3 工作原理 94 5.2.4 延伸學習 94 5.3 如何度量文本距離 95 5.3.1 開始 95 5.3.2 動手做 95 5.3.3 工作原理 98 5.3.4 延伸學習 98 5.4 用TensorFlow實現混合距離計算 98 5.4.1 開始 98 5.4.2 動手做 98 5.4.3 工作原理 101 5.4.4 延伸學習 101 5.5 用TensorFlow實現地址匹配 101 5.5.1 開始 101 5.5.2 動手做 102 5.5.3 工作原理 104 5.6 用TensorFlow實現圖像識別 105 5.6.1 開始 105 5.6.2 動手做 105 5.6.3 工作原理 108 5.6.4 延伸學習 108 第6章 神經網絡算法 109 6.1 神經網絡算法基礎 109 6.2 用TensorFlow實現門函數 110 6.2.1 開始 110 6.2.2 動手做 111 6.2.3 工作原理 113 6.3 使用門函數和激勵函數 113 6.3.1 開始 114 6.3.2 動手做 114 6.3.3 工作原理 116 6.3.4 延伸學習 117 6.4 用TensorFlow實現單層神經網絡 117 6.4.1 開始 117 6.4.2 動手做 117 6.4.3 工作原理 119 6.4.4 延伸學習 119 6.5 用TensorFlow實現神經網絡常見層 120 6.5.1 開始 120 6.5.2 動手做 121 6.5.3 工作原理 126 6.6 用TensorFlow實現多層神經網絡 126 6.6.1 開始 126 6.6.2 動手做 126 6.6.3 工作原理 131 6.7 線性預測模型的優化 131 6.7.1 開始 131 6.7.2 動手做 131 6.7.3 工作原理 135 6.8 用TensorFlow基于神經網絡實現井字棋 136 6.8.1 開始 136 6.8.2 動手做 137 6.8.3 工作原理 142 第7章 自然語言處理 143 7.1 文本處理介紹 143 7.2 詞袋的使用 144 7.2.1 開始 144 7.2.2 動手做 144 7.2.3 工作原理 149 7.2.4 延伸學習 149 7.3 用TensorFlow實現TF-IDF算法 149 7.3.1 開始 150 7.3.2 動手做 150 7.3.3 工作原理 154 7.3.4 延伸學習 154 7.4 用TensorFlow實現skip-gram模型 155 7.4.1 開始 155 7.4.2 動手做 155 7.4.3 工作原理 162 7.4.4 延伸學習 162 7.5 用TensorFlow實現CBOW詞嵌入模型 162 7.5.1 開始 162 7.5.2 動手做 163 7.5.3 工作原理 167 7.5.4 延伸學習 167 7.6 使用TensorFlow的Word2Vec預測 167 7.6.1 開始 167 7.6.2 動手做 168 7.6.3 工作原理 172 7.6.4 延伸學習 172 7.7 用TensorFlow實現基于Doc2Vec的情感分析 172 7.7.1 開始 172 7.7.2 動手做 173 7.7.3 工作原理 180 第8章 卷積神經網絡 181 8.1 卷積神經網絡介紹 181 8.2 用TensorFlow實現簡單的CNN 182 8.2.1 開始 182 8.2.2 動手做 182 8.2.3 工作原理 187 8.2.4 延伸學習 188 8.2.5 參考 188 8.3 用TensorFlow實現進階的CNN 188 8.3.1 開始 188 8.3.2 動手做 189 8.3.3 工作原理 196 8.3.4 參考 196 8.4 再訓練已有的CNN模型 196 8.4.1 開始 196 8.4.2 動手做 196 8.4.3 工作原理 199 8.4.4 參考 199 8.5 用TensorFlow實現模仿大師繪畫 199 8.5.1 開始 200 8.5.2 動手做 200 8.5.3 工作原理 205 8.5.4 參考 205 8.6 用TensorFlow實現DeepDream 205 8.6.1 開始 205 8.6.2 動手做 205 8.6.3 延伸學習 210 8.6.4 參考 210 第9章 遞歸神經網絡 211 9.1 遞歸神經網絡介紹 211 9.2 用TensorFlow實現RNN模型進行垃圾短信預測 212 9.2.1 開始 212 9.2.2 動手做 213 9.2.3 工作原理 217 9.2.4 延伸學習 218 9.3 用TensorFlow實現LSTM模型 218 9.3.1 開始 218 9.3.2 動手做 219 9.3.3 工作原理 226 9.3.4 延伸學習 226 9.4 Stacking多個LSTM Layer 226 9.4.1 開始 226 9.4.2 動手做 227 9.4.3 工作原理 228 9.5 用TensorFlow實現Seq2Seq翻譯模型 229 9.5.1 開始 229 9.5.2 動手做 229 9.5.3 工作原理 234 9.5.4 延伸學習 234 9.6 TensorFlow實現孿生RNN預測相似度 235 9.6.1 開始 235 9.6.2 動手做 236 9.6.3 延伸學習 242 第10章 TensorFlow產品化 243 10.1 簡介 243 10.2 TensorFlow的單元測試 243 10.2.1 開始 243 10.2.2 工作原理 247 10.3 TensorFlow的并發執行 247 10.3.1 開始 248 10.3.2 動手做 248 10.3.3 工作原理 250 10.3.4 延伸學習 250 10.4 分布式TensorFlow實踐 250 10.4.1 開始 250 10.4.2 動手做 250 10.4.3 工作原理 251 10.5 TensorFlow產品化開發提示 252 10.5.1 開始 252 10.5.2 動手做 252 10.5.3 工作原理 254 10.6 TensorFlow產品化的實例 254 10.6.1 開始 254 10.6.2 動手做 254 10.6.3 工作原理 256 第11章 TensorFlow的進階應用 257 11.1 簡介 257 11.2 TensorFlow可視化:Tensorboard 257 11.2.1 開始 257 11.2.2 動手做 258 11.3 Tensorboard的進階 260 11.4 用TensorFlow實現遺傳算法 262 11.4.1 開始 262 11.4.2 動手做 263 11.4.3 工作原理 265 11.4.4 延伸學習 266 11.5 TensorFlow實現k-means算法 266 11.5.1 開始 266 11.5.2 動手做 266 11.5.3 延伸學習 270 11.6 用TensorFlow求解常微分方程問題 270 11.6.1 開始 270 11.6.2 動手做 270 11.6.3 工作原理 271 11.6.4 參考 272 TensorFlow是開源機器學習庫。本書將教你如何使用TensorFlow進行復雜數據計算,讓你對數據有更深刻的理解。書中循序漸進地講解了TensorFlow的變量、矩陣和各種數據源等基本組件,深度剖析線性回歸、支持向量機、最近鄰域、神經網絡和自然語言處理等算法,并結合豐富的實例詳細講解情感分析、回歸分析、聚類分析、神經網絡和深度學習實戰等應用。此外,本書還給出了TensorFlow產品級應用的最佳實踐和擴展用法,可以幫助你由淺入深地掌握機器學習核心思維,構建起立體完備的機器學習概念體系。
通過閱讀本書,你將: 熟悉TensorFlow機器學習庫的基本組件 掌握TensorFlow的線性回歸技術 學習SVM算法及其實踐 實現神經網絡并優化預測 應用NLP和情感分析 通過實踐掌握CNN和RNN 學習TensorFlow產品化 內容簡介 本書由資深數據科學家撰寫,從實戰角度系統講解TensorFlow基本概念及各種應用實踐。真實的應用場景和數據,豐富的代碼實例,詳盡的操作步驟,帶你由淺入深系統掌握TensorFlow機器學習算法及其實現。 全書共11章,第1章介紹TensorFlow的基本概念;第2章介紹如何在計算圖中連接算法組件,創建一個簡單的分類器;第3章重點介紹如何使用TensorFlow實現各種線性回歸算法;第4章介紹支持向量機(SVM)算法;第5章介紹如何使用數值度量、文本度量和歸一化距離函數實現最近鄰域算法;第6章講述如何使用TensorFlow實現神經網絡算法;第7章闡述TensorFlow實現的各種文本處理算法;第8章擴展神經網絡算法;第9章解釋在TensorFlow中如何實現遞歸神經網絡(RNN)算法;第10章介紹TensorFlow產品級用例;第11章展示TensorFlow如何實現遺傳算法、k-means算法和求解常微分方程(ODE)。 2015年11月,Google公司開源TensorFlow,隨后不久TensorFlow成為GitHub上最受歡迎的機器學習庫。TensorFlow創建計算圖、自動求導和定制化的方式使得其能夠很好地解決許多不同的機器學習問題。
本書介紹了許多機器學習算法,將其應用到真實場景和數據中,并解釋產生的結果。 本書的主要內容 第1章介紹TensorFlow的基本概念,包括張量、變量和占位符;同時展示了在TensorFlow中如何使用矩陣和各種數學操作。本章末尾講述如何訪問本書所需的數據源。 第2章介紹如何在計算圖中連接第1章中的所有算法組件,創建一個簡單的分類器。接著,介紹計算圖、損失函數、反向傳播和訓練模型。 第3章重點討論使用TensorFlow實現各種線性回歸算法,比如,戴明回歸、lasso回歸、嶺回歸、彈性網絡回歸和邏輯回歸,也展示了如何在TensorFlow計算圖中實現每種回歸 算法。 第4章介紹支持向量機(SVM)算法,展示如何在TensorFlow中實現線性SVM算法、非線性SVM算法和多分類SVM算法。 第5章展示如何使用數值度量、文本度量和歸一化距離函數實現最近鄰域法。我們使用最近鄰域法進行地址間的記錄匹配和MNIST數據庫中手寫數字的分類。 第6章講述如何使用TensorFlow實現神經網絡算法,包括操作門和激勵函數的概念。隨后展示一個簡單的神經網絡并討論如何建立不同類型的神經網絡層。本章末尾通過神經網絡算法教TensorFlow玩井字棋游戲。 第7章闡述借助TensorFlow實現的各種文本處理算法。我們展示如何實現文本的“詞袋”和TF-IDF算法。然后介紹CBOW和skip-gram模型的神經網絡文本表示方式,并對于Word2Vec和Doc2Vec用這些方法來做預測。 第8章擴展神經網絡算法,說明如何借助卷積神經網絡(CNN)算法在圖像上應用神經網絡算法。我們展示如何構建一個簡單的CNN進行MNIST數字識別,并擴展到CIFAR-10任務中的彩色圖片,也闡述了如何針對自定義任務擴展之前訓練的圖像識別模型。本章末尾詳細解釋TensorFlow實現的模仿大師繪畫和Deep-Dream算法。 第9章解釋在TensorFlow中如何實現遞歸神經網絡(RNN)算法,展示如何進行垃圾短信預測和在莎士比亞文本樣本集上擴展RNN模型生成文本。接著訓練Seq2Seq模型實現德語-英語的翻譯。本章末尾展示如何用孿生RNN模型進行地址記錄匹配。 第10章介紹TensorFlow產品級用例和開發提示,同時介紹如何利用多處理設備(比如,GPU)和在多個設備上實現分布式TensorFlow。 第11章展示TensorFlow如何實現k-means算法、遺傳算法和求解常微分方程(ODE),還介紹了Tensorboad的各種用法和如何查看計算圖指標。 閱讀本書前的準備 本書的目標讀者 本書適用于有經驗的機器學習讀者和Python程序員。有機器學習背景的讀者會發現TensorFlow的代碼很有啟發性;有Python編程經驗的讀者會覺得代碼注釋極具參考性。 模塊說明 在本書中,你會頻繁看到開始、動手做、工作原理、延伸學習和參考這幾個模塊。 為了系統地學習相關技術,下面簡單解釋一下: 開始 該節告訴讀者該技術的內容,描述如何準備軟件或者前期的準備工作。 動手做 具體的操作步驟。 工作原理 詳細解釋前一節發生了什么。 延伸學習 附加資源,以供讀者延伸學習。 參考 提供有用的鏈接和有幫助的資源信息。 |