OpenCV 4快速入門( 簡體 字) | |
作者:馮振 郭延寧 呂躍勇 | 類別:1. -> 教材 -> 數位影像處理 |
出版社:人民郵電出版社 | 3dWoo書號: 52926 詢問書籍請說出此書號! 有庫存 NT售價: 445 元 |
出版日:7/1/2020 | |
頁數:408 | |
光碟數:0 | |
站長推薦: | |
印刷:黑白印刷 | 語系: ( 簡體 字 ) |
ISBN:9787115534781 | 加入購物車 │加到我的最愛 (請先登入會員) |
(簡體書上所述之下載連結耗時費功, 恕不適用在台灣, 若讀者需要請自行嘗試, 恕不保證, 繁體書的下載亦請直接連絡出版社) | |
基 礎 篇
第 1章 初識OpenCV 2 1.1 什么是OpenCV 2 1.1.1 OpenCV與計算機視覺 2 1.1.2 OpenCV的發展 3 1.1.3 OpenCV 4帶來了什么 4 1.2 安裝OpenCV 4 4 1.2.1 在Windows系統中 安裝OpenCV 4 4 1.2.2 Image Watch插件的使用 12 1.2.3 在Ubuntu系統中安裝 OpenCV 4 12 1.2.4 opencv_contrib擴展模塊的 安裝 15 1.2.5 安裝過程中常見問題的解決 方案 17 1.3 了解OpenCV的模塊架構 18 1.4 源碼示例程序展示 19 1.4.1 配置示例程序運行環境 19 1.4.2 邊緣檢測edge 21 1.4.3 K聚類kmeans 22 1.4.4 二維碼識別qrcode 23 1.4.5 相機使用video_capture_starter 24 1.4.6 視頻物體跟蹤camshiftdemo 25 1.5 本章小結 26 第 2章 數據載入、顯示與保存 27 2.1 圖像存儲容器 27 2.1.1 Mat類介紹 27 2.1.2 Mat類構造與賦值 29 2.1.3 Mat類支持的運算 33 2.1.4 Mat類元素的讀取 35 2.2 圖像的讀取與顯示 37 2.2.1 圖像讀取函數imread 38 2.2.2 圖像窗口函數namedWindow 39 2.2.3 圖像顯示函數imshow 40 2.3 視頻加載與攝像頭調用 40 2.3.1 視頻數據的讀取 40 2.3.2 攝像頭的直接調用 42 2.4 數據保存 43 2.4.1 圖像的保存 43 2.4.2 視頻的保存 45 2.4.3 保存和讀取XML和YMAL 文件 47 2.5 本章小結 52 進 階 篇 第3章 圖像基本操作 54 3.1 圖像顏色空間 54 3.1.1 顏色模型與轉換 54 3.1.2 多通道分離與合并 59 3.2 圖像像素操作處理 61 3.2.1 圖像像素統計 62 3.2.2 兩圖像間的像素操作 66 3.2.3 圖像二值化 71 3.2.4 LUT 76 3.3 圖像變換 78 3.3.1 圖像連接 78 3.3.2 圖像尺寸變換 81 3.3.3 圖像翻轉變換 83 3.3.4 圖像仿射變換 84 3.3.5 圖像透視變換 88 3.3.6 極坐標變換 90 3.4 在圖像上繪制幾何圖形 92 3.4.1 繪制圓形 92 3.4.2 繪制直線 93 3.4.3 繪制橢圓 93 3.4.4 繪制多邊形 94 3.4.5 文字生成 95 3.5 感興趣區域 97 3.6 圖像“金字塔” 100 3.6.1 高斯“金字塔” 100 3.6.2 拉普拉斯“金字塔” 101 3.7 窗口交互操作 104 3.7.1 圖像窗口滑動條 104 3.7.2 鼠標響應 106 3.8 本章小結 109 第4章 圖像直方圖與模板匹配 111 4.1 圖像直方圖的繪制 111 4.2 直方圖操作 113 4.2.1 直方圖歸一化 113 4.2.2 直方圖比較 116 4.3 直方圖應用 120 4.3.1 直方圖均衡化 120 4.3.2 直方圖匹配 122 4.3.3 直方圖反向投影 125 4.4 圖像的模板匹配 127 4.5 本章小結 131 第5章 圖像濾波 132 5.1 圖像卷積 132 5.2 噪聲的種類與生成 136 5.2.1 椒鹽噪聲 136 5.2.2 高斯噪聲 139 5.3 線性濾波 142 5.3.1 均值濾波 142 5.3.2 方框濾波 145 5.3.3 高斯濾波 147 5.3.4 可分離濾波 151 5.4 非線性濾波 154 5.4.1 中值濾波 154 5.4.2 雙邊濾波 156 5.5 圖像的邊緣檢測 159 5.5.1 邊緣檢測原理 159 5.5.2 Sobel算子 162 5.5.3 Scharr算子 165 5.5.4 生成邊緣檢測濾波器 167 5.5.5 Laplacian算子 168 5.5.6 Canny算法 170 5.6 本章小結 173 第6章 圖像形態學操作 175 6.1 像素距離與連通域 175 6.1.1 圖像像素距離變換 175 6.1.2 圖像連通域分析 180 6.2 腐蝕和膨脹 187 6.2.1 圖像腐蝕 188 6.2.2 圖像膨脹 192 6.3 形態學應用 195 6.3.1 開運算 195 6.3.2 閉運算 197 6.3.3 形態學梯度 197 6.3.4 頂帽運算 198 6.3.5 黑帽運算 198 6.3.6 擊中擊不中變換 199 6.3.7 圖像細化 202 6.4 本章小結 205 應 用 篇 第7章 目標檢測 208 7.1 形狀檢測 208 7.1.1 直線檢測 208 7.1.2 直線擬合 218 7.1.3 圓形檢測 220 7.2 輪廓檢測 223 7.2.1 輪廓發現與繪制 223 7.2.2 輪廓面積 228 7.2.3 輪廓長度(周長) 229 7.2.4 輪廓外接多邊形 231 7.2.5 點到輪廓距離 236 7.2.6 凸包檢測 237 7.3 矩的計算 239 7.3.1 幾何矩與中心矩 239 7.3.2 Hu矩 241 7.3.3 基于Hu矩的輪廓匹配 243 7.4 點集擬合 245 7.5 QR二維碼檢測 248 7.6 本章小結 251 第8章 圖像分析與修復 253 8.1 傅里葉變換 253 8.1.1 離散傅里葉變換 253 8.1.2 傅里葉變換進行卷積 260 8.1.3 離散余弦變換 262 8.2 積分圖像 266 8.3 圖像分割 270 8.3.1 漫水填充法 270 8.3.2 分水嶺法 274 8.3.3 Grabcut法 277 8.3.4 Mean-Shift法 279 8.4 圖像修復 282 8.5 本章小結 285 第9章 特征點檢測與匹配 287 9.1 角點檢測 287 9.1.1 顯示關鍵點 287 9.1.2 Harris角點檢測 290 9.1.3 Shi-Tomas角點檢測 293 9.1.4 亞像素級別角點檢測 296 9.2 特征點檢測 298 9.2.1 關鍵點 298 9.2.2 描述子 299 9.2.3 SIFT特征點檢測 300 9.2.4 SURF特征點檢測 303 9.2.5 ORB特征點檢測 306 9.3 特征點匹配 310 9.3.1 DescriptorMatcher類介紹 310 9.3.2 暴力匹配 312 9.3.3 顯示特征點匹配結果 313 9.3.4 FLANN匹配 315 9.3.5 RANSAC優化特征點匹配 318 9.4 本章小結 322 第 10章 立體視覺 323 10.1 單目視覺 323 10.1.1 單目相機模型 323 10.1.2 標定板角點提取 327 10.1.3 單目相機標定 331 10.1.4 單目相機校正 335 10.1.5 單目投影 339 10.1.6 單目位姿估計 341 10.2 雙目視覺 346 10.2.1 雙目相機模型 346 10.2.2 雙目相機標定 347 10.2.3 雙目相機校正 350 10.3 本章小結 353 第 11章 視頻分析 354 11.1 差值法檢測移動物體 354 11.2 均值遷移法目標跟蹤 357 11.2.1 均值遷移法實現的目標 跟蹤 357 11.2.2 自適應均值遷移法實現的目標 跟蹤 361 11.3 光流法目標跟蹤 365 11.3.1 Farneback多項式擴展算法 366 11.3.2 基于LK稀疏光流法的跟蹤 370 11.4 本章小結 375 提 高 篇 第 12章 OpenCV與機器學習 378 12.1 OpenCV與傳統機器學習 378 12.1.1 K均值 378 12.1.2 K近鄰 383 12.1.3 決策樹 389 12.1.4 隨機森林 392 12.1.5 支持向量機 394 12.2 OpenCV與深度神經網絡應用 實例 397 12.2.1 加載深度學習模型 397 12.2.2 圖像識別 400 12.2.3 風格遷移 403 12.2.4 性別檢測 405 12.3 本章小結 407 本書共12 章,主要內容包括OpenCV 4 基礎知識,OpenCV 的模塊架構,圖像存儲容器,圖像的讀取與顯示,視頻加載與攝像頭調用,圖像變換,圖像金字塔,圖像直方圖的繪制,圖像的模板匹配,圖像卷積,圖像的邊緣檢測,腐蝕與膨脹,形狀檢測,圖像分割,特征點檢測與匹配,單目和雙目視覺,光流法目標跟蹤,以及OpenCV 在機器學習方面的應用等。
本書面向的讀者是計算機視覺與圖像處理等相關專業的高校師生、企業內轉行計算機視覺與圖像處理的工作人員、已有圖像處理基礎并想了解OpenCV 4 新特性的人員。 |