Python資料科學自學聖經:不只是建模!用實戰帶你預測趨勢、找出問題與發現價值(附關鍵影音教學、範例檔)( 繁體 字) | |
作者:鄧文淵 總監製/文淵閣工作室 編著 | 類別:1. -> 程式設計 -> Python |
出版社:碁峰出版 | ![]() 詢問書籍請說出此書號! 缺書 NT定價: 折扣價: 435 元 |
出版日:5/4/2022 | |
頁數:440 | |
光碟數:0 | |
站長推薦: ![]() ![]() ![]() ![]() ![]() | |
印刷:黑白印刷 | 語系: ( 繁體 字 ) |
ISBN:9786263241657 | 【不接受訂購】 |
(簡體書上所述之下載連結耗時費功, 恕不適用在台灣, 若讀者需要請自行嘗試, 恕不保證, 繁體書的下載亦請直接連絡出版社) | |
資料科學工具篇
第1章 進入資料科學的學習殿堂 1.1 認識資料科學 1.2 Google Colab:雲端的開發平臺 1.3 Colab 的筆記功能 第2章 資料科學神器:Numpy 與Pandas 2.1 Numpy:高速運算的解決方案 2.2 Numpy 陣列建立 2.3 Numpy 陣列取值 2.4 Numpy 的陣列運算功能 2.5 Pandas:資料處理分析的強大工具 2.6 Series 的使用 2.7 DataFrame 的建立 2.8 Pandas DataFrame 資料取值 2.9 DataFrame 資料操作 第3章 資料收集:檔案存取與網路爬蟲 3.1 資料來源的取得 3.2 CSV 檔案的讀取 3.3 JSON 資料的讀取 3.4 Excel 試算表檔案的讀取 3.5 HTML 網頁資料讀取 3.6 儲存資料為檔案 3.7 認識網路爬蟲 3.8 requests 模組:讀取網站檔案 3.9 BeautifulSoup 模組:網頁解析 3.10 文字及檔案資料的收集 第4章 資訊圖表化:Matplotlib 與Seaborn 4.1 Matplotlib:資訊視覺化的核心工具 4.2 折線圖:plot 4.3 長條圖與橫條圖:bar、barh 4.4 圓形圖:pie 4.5 直方圖:hist 4.6 散佈圖:scatter 4.7 線箱圖:boxplot 4.8 設定圖表區:figure 4.9 在圖表區加入多張圖表:subplot、axes 4.10 Pandas 繪圖應用 4.11 Seaborn:更美觀的圖表工具 資料預處理篇 第5章 資料預處理:資料清洗及圖片增量 5.1 資料清洗處理 5.2 資料檢查 5.3 資料合併 5.4 樞紐分析表 5.5 圖片增量 第6章 資料預處理:標準化、資料轉換與特徵選擇 6.1 Scikit-Learn:機器學習的開發工具 6.2 數值資料標準化 6.3 非數值資料轉換 6.4 認識特徵選擇 6.5 使用Pandas 進行特徵選擇 6.6 使用Scikit-Learn 進行特徵選擇 機器學習篇 第7章 機器學習:非監督式學習 7.1 認識機器學習 7.2 K-means 演算法 7.3 DBSCAN 演算法 7.4 降維演算法 第8章 機器學習:監督式學習分類演算法 8.1 Scikit-Learn 資料集 8.2 K 近鄰演算法 8.3 單純貝氏演算法 8.4 決策樹演算法 8.5 隨機森林演算法 第9章 機器學習:監督式學習迴歸演算法 9.1 線性迴歸演算法 9.2 邏輯迴歸演算法 9.3 支持向量機演算法 深度學習篇 第10章 深度學習:深度神經網路(DNN) 10.1 認識深度學習 10.2 認識深度神經網路(DNN) 10.3 實作MNIST 手寫數字圖片辨識 10.4 Gradio 模組:深度學習成果展示 10.5 過擬合 第11章 深度學習:卷積神經網路(CNN) 11.1 認識卷積神經網路(CNN) 11.2 實作貓狗圖片辨識 第12章 深度學習:循環神經網路(RNN) 12.1 認識循環神經網路(RNN) 12.2 下載臺灣股市資料 12.3 實作臺灣股票市場股價預測 模型訓練進化篇 第13章 預訓練模型及遷移學習 13.1 預訓練模型 13.2 遷移學習 第14章 深度學習參數調校 14.1 hyperas 模組:參數調校神器 14.2 手寫數字辨識參數調校 線上下載內容:360分鐘「Python資料科學關鍵影音教學」、全書範例程式檔
網路書店年度百大電腦資訊暢銷書《Python自學聖經》系列力作運用Python掌握資料科學的價值讓人工智慧機器學習找出趨勢的關鍵密碼完整涵蓋Python資料科學技術,從開發工具、資料預處理、機器學習、深度學習到模型訓練進化一應俱全!給需要本書的人:★想進入Python資料科學領域,又不知怎麼切入的人★面對資料科學龐大又雜亂的理論與資訊卻不知如何下手的人★想快速且有系統收集大量資料,並提高處理運用效率的人★想利用大量資料進行分析,找出隱藏訊息與趨勢以協助決策的人★想運用資料數據訓練人工智慧模型,開發適用的演算法進行預測與解決問題的人隨著AI人工智慧帶來的科技革命,資料科學的應用正在改變你我的生活。如何由龐大的資料數據中擷取爬梳出有價值的資訊,判斷決策,甚至能預測趨勢、掌握契機,是資料科學為現代社會帶來的新視野。資料科學橫跨多個領域,涵蓋數學、統計與電腦科學等面向。如果想有系統的進入資料科學領域,歡迎藉由本書循序漸進的學習。書中除了有資料科學的觀念,還有技術應用與發展方向,讓每個艱澀觀念都能在範例實作的引導下有著更清楚的輪廓,讓你一探資料科學迷人的樣貌。【書籍特色】■深入淺出,只要具備基礎Python程式語言能力即可輕鬆上手。■標示出重要觀念,在學習的過程中不會錯失關鍵內容。■應用範例導向,每個觀念皆附實用案例,不怕學不會。■不使用艱澀數學推導資料科學原理,而以淺顯易懂的文字解說學理。■實作圖片增量及遷移學習,即使少量資料也可訓練出實用模型。■實作機器學習與深度學習模型參數調校,輕鬆建立完美模型。【重要關鍵】■應用工具:雲端開發平臺(Google Colab)、資料科學工具(Numpy、Pandas、Matplotlib、Seaborn)、網路爬蟲(requests、BeautifulSoup)。■資料預處理:資料清洗、缺失值、重複值及異常值的處理、資料檢查、資料合併、樞紐分析表、圖片增量,以及資料標準化、資料轉換與特徵選擇。■機器學習:學習工具(Scikit-Learn)、非監督式學習(K-means演算法、DBSCAN演算法、PCA降維演算法)、監督式學習分類演算法(Scikit-Learn資料集、K近鄰演算法、單純貝氏演算法、決策樹演算法、隨機森林演算法)、監督式學習迴歸演算法(線性迴歸演算法、邏輯迴歸演算法、支持向量機演算法)。■深度學習:學習工具(TensorFlow、Keras)、深度神經網路(DNN)、MNIST手寫數字圖片辨識實作、Gradio模組(深度學習成果展示、過擬合)、卷積神經網路(CNN)與循環神經網路(RNN)。■模型訓練進化:預訓練模型、遷移學習、深度學習參數調校、hyperas參數調校神器,以及手寫數字辨識參數調校。【超值學習資源】獨家收錄360分鐘「Python資料科學關鍵影音教學」、全書範例程式檔 |