TensorFlowpºâ¾÷µøıì²z»P¹ê¾Ô ( ²Åé ¦r) |
§@ªÌ¡G¼Ú¶§ÄPµ{¡B¥ô¯EµM | Ãþ§O¡G1. -> ±Ð§÷ -> ¼Æ¦ì¼v¹³³B²z ¡@¡@¡@2. -> µ{¦¡³]p -> ²`«×¾Ç²ß |
ĶªÌ¡G |
¥Xª©ªÀ¡G²MµØ¤j¾Ç¥Xª©ªÀ | 3dWoo®Ñ¸¹¡G 54792 ¸ß°Ý®ÑÄy½Ð»¡¥X¦¹®Ñ¸¹¡I¡i¦³®w¦s¡j NT°â»ù¡G 445 ¤¸ |
¥Xª©¤é¡G6/1/2021 |
¶¼Æ¡G350 |
¥úºÐ¼Æ¡G0 |
|
¯¸ªø±ÀÂË¡G |
¦L¨ê¡G¶Â¥Õ¦L¨ê | »y¨t¡G ( ²Åé ª© ) |
|
¥[¤JÁʪ«¨® ¢x¥[¨ì§Úªº³Ì·R (½Ð¥ýµn¤J·|û) |
ISBN¡G9787302579687 |
§@ªÌ§Ç¡@|¡@ĶªÌ§Ç¡@|¡@«e¨¥¡@|¡@¤º®e²¤¶¡@|¡@¥Ø¿ý¡@|¡@§Ç |
(²Åé®Ñ¤W©Òz¤§¤U¸ü³sµ²¯Ó®É¶O¥\, ®¤¤£¾A¥Î¦b¥xÆW, YŪªÌ»Ýn½Ð¦Û¦æ¹Á¸Õ, ®¤¤£«OÃÒ) |
§@ªÌ§Ç¡G |
ĶªÌ§Ç¡G |
«e¨¥¡G¤H¤u´¼¯àªº·§©À¦¦b20¥@¬ö³Q´£¥X¡A¨äÄݤ_pºâ¾÷¬ì¾Çªº¤@Ó¤À¤ä¡C¦ý¬O¨ü¤_·í®É¦³ªºpºâ¸ê·½¡A¤H¤u´¼¯à¤@ª½¥¼¯à®i²{¨ä¥¨¤jªº«Â¤O¡C¶i¤J21¥@¬ö¦Z¡AÀHµÛ¼Æ¾Ú¶qªºÃz¬µ¦¡¼Wªø»Ppºâ¸ê·½ªº´¶¹M¤Æ¡A¤H¤u´¼¯à±o¨ì¤F¥R¤Àªºµo®i¡A¦}¥B±o¨ì¤F¹êÅ窺¤ä¼µ¡C¥¦±q³Ìªì¸Õ¹Ï¼ÒÀÀ¤HÃþ¤j¸£¯«¸g¤¸¿E¬¡ªº¤è¦¡¨Ï¾÷¾¹¼Ò«¬¾Ç²ßª¾ÃѦ}²£¥ÍÃþ¦ü¤HÃþ«ä¦Òªº´¼¯à¡C ¤H¤u´¼¯à±q³Ð³y¤§©l¨ì²{¦b¡A²z½×©M§Þ³N³vº¥¦¨¼ô¡AÀ³¥Îªº»â°ì¤]¤£Â_ÂX¤j¡A±qpºâ¾÷µøı¥ô°È¡B¦ÛµM»y¨¥³B²z¥ô°È¡B»yµÃѧO¥ô°È¨ì±ÀÂ˺âªk³£¦³¤H¤u´¼¯àºâªkªºÀ³¥Î¡C¤H¤u´¼¯à¬O¤@ªù·¥¨ã¬D¾Ô»P«e´ºªº¬ì¾Ç¡A±q¨Æ»P¤H¤u´¼¯à¬ÛÃö¤u§@ªº¤Hû»Ýn¥²³Æ¼Æ¾Çª¾ÃÑ¡Bpºâ¾÷ª¾ÃÑ»P¯«¸g¬ì¾Çª¾ÃÑ¡AÄݤ_¦h¾Ç¬ì¥æ¤e¿Ä¦Xªº¬ì¾Ç¡C¦b¦p¤µªñ¥G¥þ¥Á¤H¤u´¼¯àªº®É¥N¡AµL½×¬O¦b®Õ¾Ç¥ÍÁÙ¬O¤w¨B¤J¾³õªº¤u§@ªÌ¡A¤F¸Ñ¤@¨Ç¤H¤u´¼¯àªº°ò¥»ª¾ÃÑ»Pºâªk¹ï¤H¥Í³£¦³·¥¤jªºÀ°§U¡C ÀHµÛ¤H¤u´¼¯àªº¼sªx¬y¦æ¡A¦U¤j¤¬Ápºô¥¨ÀY³£µÛ¤â¶}µo¬ÛÀ³ªº²`«×¾Ç²ß®Ø¬[¡A°ê¥~¦p¨¦ºqªºTensorFlow¡BÁy®ÑªºPyTorchµ¥¡A°ê¤º«h¦³¦Ê«×ªºPaddlePaddleµ¥¡A¨ä¤¤¦U¤j²`«×¾Ç²ß®Ø¬[³£¦U¦³Àu¶Õ¡A¥¦Ì¹ï¤_¯à¹ê²{ªº¼Ò«¬µ²ºc¤]¦U¦³°¾¦n¡A·Qn§¹¥þ´x´¤¦UºØ²`«×¾Ç²ß¼Ò«¬¡A¶È¶È´x´¤¤@ºØ²`«×¾Ç²ß®Ø¬[¬O§¹¥þ¤£°÷ªº¡C§@¬°¤Jªùªº²`«×¾Ç²ß®Ø¬[¡ATensorFlow¤£¥¢¬°¤@ºØ¦nªº®Ø¬[¡A¨ä¨ã¦³²M´·ªºÅÞ¿è¼h¦¸¡B¤è«Kªº¥iµø¤Æ¤u¨ã¡B§¹¾ãªºªÀ°Ï¡A¦bÀ°§UŪªÌ²z¸Ñ¼Ò«¬²Ó¸`ªº¦P®É¤è«KŪªÌ¬d¾\¬ÛÃö¸ê®Æ¦Û¦æ¾Ç²ß§ó¦hª¾ÃÑ¡C ¥»®Ñ±¦V©Ò¦³·Q¤F¸Ñ»P¤H¤u´¼¯à¬ÛÃöª¾ÃѪºÅªªÌ¡AµL½×¬O¹s°ò¦©Î¬O¨ã¦³¤@©w°ò¦ªº¾Ç¥Í©Î¤u§@ªÌ³£¾A¥Î¡C¥»®Ñ¥HTensorFlow¬°²`«×¾Ç²ß®Ø¬[¡A¥DnÁ¿¸Ñpºâ¾÷µøı¥ô°È¤¤¬ÛÃöªºª¾ÃÑ¡CTensorFlow¥Ø«e¤w§ó·s¦Ü2.xª©¡A¨ä»yªk»P§ó©ö¥ÎªºKeras¬Ûªñ¡A»PTensorFlow 1.xªº¥N½X¼gªk®t²§¸û¤j¡C¥»®Ñ©Òªö¥ÎªºTensorFlowª©¥»¬°1.14.0¡A¬OTensorFlow 1.x¤¤ªº³Ì¦Z¤@Óª©¥»¡A¿ï¥Î¸Óª©¥»¥Dn¦³¥H¤U¨âÂI¦Ò¼{¡G ²Ä¤@¡A¥Ñ¤_TensorFlow 1.x´£¨ÑªºAPI¨ç¼Æ§ó¥[©³¼h¡A¦]¦¹¦b½s¼g¥N½X®É¯à°÷ÅýŪªÌ¯A¤Î§ó¦hªº©³¼h¹ê²{²Ó¸`¡A¤è«KŪªÌ¹ïì²z¥[²`²z¸Ñ¡F ²Ä¤G¡ATensorFlow 1.14.0ݨãTensorFlow 1.x»PTensorFlow 2.xªº¯S©Ê¡A¹ï¤_¥H¦Z·Q¾E²¾¨ìTensorFlow 2.xªºÅªªÌ§ó¬°¤Í¦n¡C ²Ä1©M2³¹¥Dn¬°¹s°ò¦ªºÅªªÌ³]p¡A²Ä1³¹¤Þ¾ÉŪªÌ¦b¤£¦Pªº¾Þ§@¨t²Î¤U¥H¤£¦Pªº¤è¦¡°t¸mTensorFlow©Ò»Ýªº½sµ{Àô¹Ò¡F ²Ä2³¹¬°ÅªªÌ¤¶²Ð¤@¨Ç±`¥ÎªºPython½sµ{¤u¨ã¥]¡A³o¨Ç¤u¨ã¤£¶È¦b¤§¦Zªº³¹¸`¤¤·|¥Î¨ì¡A¦bŪªÌ¥®É¶i¦æPython½sµ{ªº¹Lµ{¤¤¤]¤Q¤À¦³À°§U¡F ²Ä3³¹¬°¹ïTensorFlow¤£¼ô±xªºÅªªÌ³]p¡A¹ïTensorFlow¤¤ªº¤@¨Ç¥Dn·§©À¶i¦æ¤F¤¶²Ð¡A¨Ò¦p¦p¦ó¨Ï¥ÎTensorFlow½s¼gºôµ¸¼Ò«¬ªº¿é¤J¼h¡A¦p¦ó¨Ï¥ÎTensorFlow©w¸qºôµ¸µ²ºc¦}±N¨ä¨Ï¥ÎTensorBoard¶i¦æ¥iµø¤Æµ¥¡F ²Ä4³¹ªº¤º®e§ó¥[°¾«²z½×©Ê¡A±q¹s¶}©l¤¶²Ð²`«×¾Ç²ß¤¤ªº¤@¨Ç«n·§©À¡A¥]¬A¤£¦P¥ô°È¾A¥Îªº¿E¬¡¨ç¼Æ¡B·l¥¢¨ç¼Æ¡BÀu¤Æ¾¹µ¥¡A¦P®É¤¶²Ð¤F²`«×¾Ç²ß¥ô°È¤¤°V½m¼Ò«¬ªº§Þ¥©»P°Ñ¼Æªº¿ï¾Ü¡A¬Û«H³q¹L³o¨Ç§Þ¥©¡AŪªÌ¯à°÷§ó§Ö¨Ï¼Ò«¬¦¬ÀÄ¡A¹F¨ì¦Û¤v·Qnªº®ÄªG¡F ²Ä5³¹«h«ÂIÁ¿¸Ñ²`«×¾Ç²ß¥ô°È¤¤±`¨Ï¥Îªº¼Æ¾Ú¶°¡A±q¸û¤pªº³W«h¼Æ¾Ú¶°¨ì¼Æ¾Ú¶q¥¨¤j¦}¥B¹Ï¹³¤£³W«hªº¼Æ¾Ú¶°§¡¦³¯AÂy¡AŪªÌÀ³µÛ«Ãöª`¹Ï¹³¤£³W«hªº¼Æ¾Ú¶°ªº¨Ï¥Î¤èªk¡A¦]¬°³o§ó±µªñ¤_¤é±`¤HÌ¥|³B¦¬¶°¨ìªº¹Ï¹³¡A°£¦¹¥H¥~¡AÁÙµÛ«¤¶²Ð¤F¦p¦ó±qÀY³]p¼Æ¾Ú¶°Ãþ¡A¥]¬A¤£¦P®æ¦¡¹Ï¹³¼Æ¾ÚªºÅª¨ú»PÀò¨úµ¥¡C²Ä6~8³¹²`¤JÁ¿¸Ñ²`«×¾Ç²ß¼Ò«¬¡A±N«e5³¹¤¶²Ðªºª¾ÃÑ»P¥N½X¶i¦æ¾ã¦X¡A¥H§¹¦¨±q¼Æ¾Ú·Ç³Æ¨ì¨Ï¥Î¼Ò«¬¶i¦æ¹w´úªº¾ãÓ¹Lµ{¡C²Ä6³¹±q³Ì²³æªº¥þ³s±µ¯«¸gºôµ¸¶}©l¡A¨Ï¥Î¨ä§¹¦¨¦^Âk»P¤ÀÃþ¥ô°È¡A±a»âŪªÌªì¨B·P¨ü¯«¸gºôµ¸ªº¾y¤O¡F ²Ä7³¹¦b¥þ³s±µ¯«¸gºôµ¸ªº°ò¦¤W¡A¥[¤J¨÷¿n¼h»PÂà¸m¨÷¿n¼h¡A¤¶²Ð¨÷¿n¯«¸gºôµ¸¡A¥H¤Î¨Ï¥Î¤£¦Pªº¨÷¿n¯«¸gºôµ¸¼Ò«¬§¹¦¨¤F³¡¤À¼Æ¾Ú¶°ªºÃѧO¥ô°È¡A¦P®ÉÁÙ¦VŪªÌ§e²{¤F¤@¨Ç¯«¸gºôµ¸¼Ò«¬¤ñ¸û¦³½ìªºÀ³¥Î¡A¦p¨Ï¹Ï¹³§ó²M´·¡B¬°¶Â¥Õ¹Ï¹³¤W¦âµ¥¡F ²Ä8³¹¦b¨÷¿n¯«¸gºôµ¸ªº°ò¦¤W¨Ï¥Î¤£¦Pªº²z½×°²³]¡A¨Ï¼Ò«¬§¹¦¨¹Ï¹³¥Í¦¨ªº¥ô°È¡A³q¹L¹ï¨âºØ¸g¨å¥Í¦¨¦¡¼Ò«¬ªº¤¶²Ð¡A¬Û«HŪªÌ¯à¹ï¯«¸gºôµ¸¼Ò«¬ªºÀ³¥Î³õ´º¦h¤@¼h²z¸Ñ¡C ¥»®Ñªº¤º®e¤Q¤À³s³e¡A¨CÓ³¹¸`ªº¤º®e³£·|¨Ï¥Î¨ì«e±³¹¸`Á¿¸Ñ¹Lªºª¾ÃÑ¡A¦®¦b³Ì¤j«×«OÃÒŪªÌ¾Ç²ßªº³s³e©Ê¡A¦P®É¥»®Ñ±N±âÀßÃøÀ´ªº¼Æ¾Ç¤½¦¡´î¨ì³Ì¤Ö¡AºÉ¤O¥H¹Ï¥Üªº¤è¦¡«P¶iŪªÌ²z¸Ñ¡A¥»®Ñ³¡¤À±m¹Ï½Ð¨£´¡¶¡C¬Û«HŪªÌŪ§¹¥»®Ñ¦Z·|¹ïpºâ¾÷µøı¬ÛÃö¥ô°È¦³¤@Ó§ó²M´·ªº²z¸Ñ¡A§Æ±æ¥»®Ñ¯à¦¨¬°¨C¤@¦ìŪªÌ¥´¶}²`«×¾Ç²ß»PTensorFlowªºª÷Æ_°Í¡C ½sªÌ2021¦~1¤ë
¥»®Ñ·½¥N½X¤U¸ü |
¤º®e²¤¶¡G¥»®Ñ¥HPython¼Æ¾Ú³B²z¤u¨ã©M²`«×¾Ç²ßªº°ò¥»ì²z¬°¤Á¤JÂI¡A¥Ñ²L¤J²`¤¶²ÐTensorFlowªº¨Ï¥Î¤èªk¡C¥Ñì²zµÛ¤â¨ì¥N½X¹ê½î¡A¤º®e±q³Ì°ò¥»ªº¦^Âk°ÝÃD¶}©l¡A¨ìªñ¦~¨Ó¤j¼öªº¨÷¿n¯«¸gºôµ¸©M¥Í¦¨¦¡¼Ò«¬¡C¥»®Ñ¬Ù¥h¤j¶q·Ðº¾ªº¼Æ¾Ç±À¾É¡A¥H³q«U©öÀ´ªº»y¨¥©M¥Ü¨ÒÄÄz²`«×¾Ç²ßªºì²z¡C ¥»®Ñ¦@8³¹¡A²Ä1©M2³¹¤¶²ÐTensorFlowªºÀô¹Ò·f«Ø»PPython°ò¥»¼Æ¾Ú³B²z¤u¨ã¡A¬°¦Z±¤¶²ÐTensorFlow°µ·Ç³Æ¡F²Ä3~5³¹Á¿¸ÑTensorFlow©M²`«×¾Ç²ß¤¤ªº°ò¥»·§©À¤Î²`«×¾Ç²ß±`¥Î¼Æ¾Ú¶°¡F²Ä6~8³¹±q©ö¨ìÃø²`¤JÁ¿¸Ñ¤£¦Pªº¯«¸gºôµ¸¼Ò«¬¦}°t¦X¤j¶qªº¥Ü¨Ò¡A¶i¤@¨B¾d©TTensorFlow¥N½Xªº¨Ï¥Î¡C¥»®Ñ°t¦³¾ã®M¥N½X¡A¦b«ÂI¡BÃøÂI³B°t¦³Á¿¸ÑµøÀW¡AŪªÌ¥i¥H®Ú¾Ú¦Û¨¿³½ì»P»Ý¨D¹ï¥N½X¶i¦æקï¦}³q¹LµøÀW¹ïÃø¥H²z¸Ñªºª¾ÃÑÂI¶i¦æ¾d©T¡C ¥»®ÑªºÃø«×¡B¼h¦¸²M´·¡A¾A¦X¥ô¦ó§Æ±æ¤Jªù¤H¤u´¼¯à»â°ìªº¾Ç¥Í©Î¤u§@ªÌ¾\Ū¡A¦P®É¤]¥]§t·sªº§Þ³N¡A¾A¤_·Qnºò¸òµøı¬ã¨sªº±q·~¤Hû¾\Ū¡C |
¥Ø¿ý¡G²Ä1³¹²`«×¾Ç²ß²¤¶¤ÎTensorFlowÀô¹Ò·f«Ø¡]21min¡^ 1.1¤°¤\¬O²`«×¾Ç²ß 1.2²`«×¾Ç²ß»y¨¥»P¤u¨ã 1.3TensorFlowªºÀu¶Õ 1.4TensorFlowªº¦w¸Ë»PÀô¹Ò°t¸m 1.4.1Windows¤U°t¸mGPUª©TensorFlow 1.4.2Linux¤U°t¸mGPUª©TensorFlow 1.4.3ª½±µ³q¹LAnaconda¸Ñ¨MÀô¹Ò¨Ì¿à 1.4.4¦w¸ËCPUª©¥»ªºTensorFlow 1.5¤pµ² ²Ä2³¹±`¥ÎªºPython¼Æ¾Ú³B²z¤u¨ã 2.1NumPyªº¨Ï¥Î 2.1.1NumPy¤¤ªº¼Æ¾ÚÃþ«¬ 2.1.2NumPy¤¤¼Æ²Õªº¨Ï¥Î 2.2Matplotlibªº¨Ï¥Î 2.2.1Matplotlib¤¤ªº¬ÛÃö·§©À 2.2.2¨Ï¥ÎMatplotlibø¹Ï 2.3Pandasªº¨Ï¥Î 2.3.1Pandas¤¤ªº¼Æ¾Úµ²ºc 2.3.2¨Ï¥ÎPandasŪ¨ú¼Æ¾Ú 2.3.3¨Ï¥ÎPandas³B²z¼Æ¾Ú 2.4SciPyªº¨Ï¥Î 2.4.1¨Ï¥ÎSciPy¼g¤Jmat¤å¥ó 2.4.2¨Ï¥ÎSciPyŪ¨úmat¤å¥ó 2.5scikitúQlearnªº¨Ï¥Î 2.5.1scikitúQlearnªº¨Ï¥Î®Ø¬[ 2.5.2¨Ï¥ÎscikitúQlearn¶i¦æ¦^Âk 2.5.3¨Ï¥ÎscikitúQlearn¶i¦æ¤ÀÃþ 2.6Pillowªº¨Ï¥Î 2.6.1¨Ï¥ÎPillowŪ¨ú¦}Åã¥Ü¹Ï¹³ 2.6.2¨Ï¥ÎPillow³B²z¹Ï¹³ 2.7OpenCVªº¨Ï¥Î 2.7.1¨Ï¥ÎOpenCVŪ¨ú»PÅã¥Ü¹Ï¹³ 2.7.2¨Ï¥ÎOpenCV³B²z¹Ï¹³ 2.8argparseªº¨Ï¥Î 2.8.1argparseªº¨Ï¥Î®Ø¬[ 2.8.2¨Ï¥Îargparse¸ÑªR©R¥O¦æ°Ñ¼Æ 2.9JSONªº¨Ï¥Î 2.9.1¨Ï¥ÎJSON¼g¤J¼Æ¾Ú 2.9.2¨Ï¥ÎJSONŪ¨ú¼Æ¾Ú 2.10¤pµ² ²Ä3³¹TensorFlow°ò¦ 3.1TensorFlowªº°ò¥»ì²z 3.2TensorFlow¤¤ªºpºâ¹Ï»P·|¸Ü¾÷¨î 3.2.1pºâ¹Ï 3.2.2·|¸Ü¾÷¨î 3.3TensorFlow¤¤ªº±i¶qªí¥Ü 3.3.1tf.constant 3.3.2tf.Variable 3.3.3tf.placeholder 3.4TensorFlow¤¤ªº¼Æ¾ÚÃþ«¬ 3.5TensorFlow¤¤ªº©R¦WªÅ¶¡ 3.5.1tf.get_variable 3.5.2tf.name_scope 3.5.3tf.variable_scope 3.6TensorFlow¤¤ªº±±¨î¬y 3.6.1TensorFlow¤¤ªº¤À¤äµ²ºc 3.6.2TensorFlow¤¤ªº´`Àôµ²ºc 3.6.3TensorFlow¤¤«ü©w¸`ÂI°õ¦æ¶¶§Ç 3.7TensorFlow¼Ò«¬ªº¿é¤J»P¿é¥X 3.8TensorFlowªº¼Ò«¬«ù¤[¤Æ 3.8.1¼Ò«¬ªº«O¦s 3.8.2¼Ò«¬ªºÅª¨ú 3.9¨Ï¥ÎTensorBoard¶i¦æµ²ªG¥iµø¤Æ 3.9.1pºâ¹Ïªº¥iµø¤Æ 3.9.2¥Ú¶qÅܤƪº¥iµø¤Æ 3.9.3¹Ï¹³ªº¥iµø¤Æ 3.10¤pµ² ²Ä4³¹²`«×¾Ç²ßªº°ò¥»·§©À¡]108min¡^ 4.1²`«×¾Ç²ß¬Û¸û¤_¶Ç²Î¤èªkªºÀu¶Õ 4.2²`«×¾Ç²ß¤¤ªº¿E¬¡¨ç¼Æ 4.2.1Sigmoid 4.2.2Softmax 4.2.3Tanh 4.2.4ReLU 4.2.5LeakyReLU 4.2.6PReLU 4.2.7RReLU 4.2.8ReLUúQ6 4.2.9ELU 4.2.10Swish 4.2.11Mish 4.3²`«×¾Ç²ß¤¤ªº·l¥¢¨ç¼Æ 4.3.1¦^Âk¥ô°È 4.3.2¤ÀÃþ¥ô°È 4.4²`«×¾Ç²ß¤¤ªºÂk¤@¤Æ/¼Ð·Ç¤Æ¤èªk 4.4.1Âk¤@¤Æ¤èªk 4.4.2¼Ð·Ç¤Æ¤èªk 4.5²`«×¾Ç²ß¤¤ªºÀu¤Æ¾¹ 4.5.1¤£±a°Ê¶qªºÀu¤Æ¾¹ 4.5.2±a°Ê¶qªºÀu¤Æ¾¹ 4.6²`«×¾Ç²ß¤¤ªº§Þ¥© 4.6.1¿é¤J¼Æ¾Úªº³B²z 4.6.2¿E¬¡¨ç¼Æªº¿ï¾Ü 4.6.3·l¥¢¨ç¼Æªº¿ï¾Ü 4.6.4¼Ð·Ç¤Æ¤èªkªº¿ï¾Ü 4.6.5batch_sizeªº¿ï¾Ü 4.6.6Àu¤Æ¾¹ªº¿ï¾Ü 4.6.7¾Ç²ß²vªº¿ï¾Ü 4.7¤pµ² ²Ä5³¹±`¥Î¼Æ¾Ú¶°¤Î¨ä¨Ï¥Î¤è¦¡ 5.1IRIS»ð§Àªá¼Æ¾Ú¶° 5.2MNIST¤â¼g¼Æ¦r¼Æ¾Ú¶° 5.3SVHN¼Æ¾Ú¶° 5.4CIFARúQ10»PCIFARúQ100¼Æ¾Ú¶° 5.4.1CIFARúQ10 5.4.2CIFARúQ100 5.4.3¹ï¹Ï¹³¶i¦æ¼Æ¾Ú¼W±j 5.5OxfordFlower¼Æ¾Ú¶° 5.6ImageNet¼Æ¾Ú¶° 5.7¤pµ² ²Ä6³¹¥þ³s±µ¯«¸gºôµ¸ 6.1¤°¤\¬O¥þ³s±µ¯«¸gºôµ¸ 6.1.1·Pª¾¾÷ 6.1.2¥þ³s±µ¯«¸gºôµ¸ 6.2¨Ï¥Î¥þ³s±µ¯«¸gºôµ¸¶i¦æ¦^Âk 6.3¨Ï¥Î¥þ³s±µ¯«¸gºôµ¸¶i¦æ¤ÀÃþ 6.4¨Ï¥Î¥þ³s±µ¯«¸gºôµ¸¹ï¼Æ¾Ú°ºû 6.5¨Ï¥Î¥þ³s±µ¯«¸gºôµ¸§¹¦¨¤â¼g¼Æ¦rÃѧO 6.5.1°V½m¼Ò«¬ 6.5.2«O¦sÅv« 6.5.3¥æ¤¬±µ¦¬¥Î¤á¿é¤J 6.5.4¥[¸üÅv«¦}¹w´ú 6.6¤pµ² ²Ä7³¹¨÷¿n¯«¸gºôµ¸¡]77min¡^ 7.1¤°¤\¬O¨÷¿n 7.1.1¨÷¿nªº·§©À 7.1.2¨÷¿n¾Þ§@ªº°Ñ¼Æ 7.1.3¨÷¿nªºpºâ¤è¦¡ 7.2¨÷¿n¯«¸gºôµ¸¤¤±`¥Îªº¼h 7.2.1¿é¤J¼h 7.2.2¨÷¿n¼h 7.2.3¿E¬¡¼h 7.2.4¼Ð·Ç¤Æ¼h 7.2.5¦À¤Æ¼h 7.2.6¥þ³s±µ¼h 7.3±`¥Îªº¨÷¿n¯«¸gºôµ¸µ²ºc 7.3.1VGGNet 7.3.2Inception 7.3.3ResNet 7.3.4DenseNet 7.3.5ResNeXt 7.3.6MobileNet 7.3.7DualPathNetwork 7.3.8SENet 7.3.9SKNet 7.3.10ResNeSt 7.4¨Ï¥Î¨÷¿n¯«¸gºôµ¸§¹¦¨¹Ï¹³¤ÀÃþ 7.4.1©w¸q©R¥O¦æ°Ñ¼Æ 7.4.2¼Ò«¬°V½m¨ç¼Æ 7.4.3¼Ò«¬´ú¸Õ¨ç¼Æ 7.4.4¥D¨ç¼Æ 7.4.5°V½m¼Ò«¬ÃѧO¤â¼g¼Æ¦r 7.4.6°V½m¼Ò«¬ÃѧO¦ÛµM³õ´º¹Ï¹³ 7.5¨÷¿n¯«¸gºôµ¸¨s³º¾Ç¨ì¤F¤°¤\ 7.5.1¨÷¿n®Öªº¥iµø¤Æ 7.5.2Ãþ¿E¬¡¬M®gªº¥iµø¤Æ 7.5.3¨÷¿n¯«¸gºôµ¸¿é¥X¹w´úȪº¥iµø¤Æ 7.6¨Ï¥Î¨÷¿n¯«¸gºôµ¸µ¹¥þ³s±µ¯«¸gºôµ¸¶Ç±Âª¾ÃÑ 7.7Âà¸m¨÷¿n¼h 7.7.1¤°¤\¬OÂà¸m¨÷¿n¼h 7.7.2¨Ï¥ÎÂà¸m¨÷¿n¼hÅý¹Ï¹³Åܱo²M´· 7.7.3¨Ï¥ÎÂà¸m¨÷¿n¼hµ¹¹Ï¹³¤W¦â 7.8¨Ï¥Î¨÷¿n¼h»P¤Ï¨÷¿n¼h°µ¦Û½s½X¾¹ 7.9¤pµ² ²Ä8³¹¥Í¦¨¦¡¼Ò«¬ 8.1¤°¤\¬O¥Í¦¨¦¡¼Ò«¬ 8.2ÅܤÀ¦Û½s½X¾¹ 8.2.1¤°¤\¬OÅܤÀ¦Û½s½X¾¹ 8.2.2¨Ï¥ÎÅܤÀ¦Û½s½X¾¹¥Í¦¨¤â¼g¼Æ¦r 8.2.3¨Ï¥ÎÅܤÀ¦Û½s½X¾¹¥Í¦¨«ü©wªº¼Æ¦r 8.3¥Í¦¨¦¡¹ï§Üºôµ¸ 8.3.1¤°¤\¬O¥Í¦¨¦¡¹ï§Üºôµ¸ 8.3.2¨Ï¥Î¥Í¦¨¦¡¹ï§Üºôµ¸¥Í¦¨¤â¼g¼Æ¦r 8.3.3¨Ï¥Î¥Í¦¨¦¡¹ï§Üºôµ¸¥Í¦¨«ü©wªº¼Æ¦r 8.3.4¨Ï¥Î¥Í¦¨¦¡¹ï§Üºôµ¸¥Í¦¨¦ÛµM¹Ï¹³ 8.3.5¨Ï¥Î¥Í¦¨¦¡¹ï§Üºôµ¸¶i¦æ¹Ï¹³°ìÂà´« 8.4¤pµ² |
§Ç¡G |